Help with raising imaginary numbers to the power of a number - Mein MATLAB Forum - goMatlab.de

Mein MATLAB Forum - goMatlab.de

Mein MATLAB Forum

 
Gast > Registrieren       Autologin?   

Bücher:

Fachkräfte:
Informatiker (m/w) für den Bereich Toolkette Embedded Software
Weiterentwicklung einer MATLAB-/Simulink-Toolkette, Automatisierung der Code-Generierung mit TargetLink und Embedded Coder
cbb-Software GmbH - Stuttgart

Softwareentwickler (m/w) automatische Codegenerierung
Umsetzung, Neuprogrammierung und Weiterentwicklung in Simulink, TargetLink und C
EFS - Ingolstadt, Wolfsburg

Ingenieur (m/w) Methoden und Auswertesoftwareentwicklung
Bearbeitung von Forschungsthemen im Zusammenhang mit Windenergieanlagentechnik und Meteorologie
ENERCON GmbH - Remels

Senior Software Entwickler Automotive Embedded (w/m)
Modelbased Softwareentwicklung für Automotive Steuergeräte
ESG Elektroniksystem- und Logistik-GmbH - Fürstenfeldbruck, Ingolstadt

Funktionsentwickler/in Funktionale Sicherheit
Embedded-Software- und Funktionsentwicklung in der Automatisierung des Antriebstrangs
LuK GmbH & Co. KG - Bühl

weitere Angebote

Partner:


Vermarktungspartner


Forum
      Option
[Erweitert]
  Diese Seite per Mail weiterempfehlen
     


Gehe zu:  
Neues Thema eröffnen Neue Antwort erstellen

Help with raising imaginary numbers to the power of a number

 

JohnnyyB

Gast


Beiträge: ---
Anmeldedatum: ---
Wohnort: ---
Version: ---
     Beitrag Verfasst am: 02.01.2016, 13:22     Titel: Help with raising imaginary numbers to the power of a number
  Antworten mit Zitat      
f anyone could help, I would be so so so unbelievably thankful - so thank you for everyone reading it - you are great!

So here is the deal; I define a Gauß Sum with

G(p,q)=\sum\limits_{m=1}^{q-1}\zeta_p^j*\zeta_q^m

Here  \zeta_q=exp^{\frac{2 \pi i}  {q} } and  \zeta_p=exp^{\frac{2 \pi i}  {p} } and j that way, so that g^j \equiv m \pmod{q} and p \mid q-1 (g is a already setted primitive root of q)

Now all Gauß Sums can be expressed uniquely as sums \sum\limits_{j=0}^{p-2}\sum\limits_{k=0}^{q-2}a_{j,k}\zeta_p^j \zeta_q^k

Now two elements G(p,q), \overline{G}(p,q) of those ring are said to be congruent to each other modulo n if all a_{j,k} \equiv \overline {a}_{j,k} \pmod{n}...


Now my problem is to solve a problem like: Find the first positive integer u, so that:

G(p,q)^u \equiv \zeta_p^j \pmod{n} for some integer j;

Also I try to implement this in Matlab;
So even if I manage to save the a_{j,k} in the right way, when I raise it to the power of u and u ] 1. Then I am truly unable how those a_{j,k} develop like e.g. how the a_{j,k} from G(p,q) would develop if I calculate G(p,q)^2. This is obviously still a part of the ring, so there must be integers a_{j,k} also for this element but I have no idea how to get them when I really try to implement it
Anyone an idea for me? Smile


Jan S
Moderator

Moderator


Beiträge: 10.619
Anmeldedatum: 08.07.10
Wohnort: Heidelberg
Version: 2009a, 2016b
     Beitrag Verfasst am: 02.01.2016, 15:14     Titel: Re: Help with raising imaginary numbers to the power of a nu
  Antworten mit Zitat      
Dear JohnnyyB,

I assume, that your question is far away from conering the Matlab implementation, but it sounds like the first steps are to obtain a mathematical method to find the solutions. Only if you have such a strategy, the implementation as code is possible.

Zitat:
Then I am truly unable how those a_{j,k} develop like e.g. how the a_{j,k} from G(p,q) would develop if I calculate G(p,q)^2.

I'm convinced that readers in this forum who are not working in exactly the same field of science as you, cannot reconsider, what you are talking of.

If you have tried to implement this partially in Matlab, and have a question concerning Matlab, please post the code.

Therefore I move this question to the Off-Topic category.

Kind regards, Jan
Private Nachricht senden Benutzer-Profile anzeigen
Verschoben: 02.01.2016, 15:14 Uhr von Jan S
Von Programmierung nach Off Topic
 
Neues Thema eröffnen Neue Antwort erstellen



Einstellungen und Berechtigungen
Beiträge der letzten Zeit anzeigen:

Du kannst Beiträge in dieses Forum schreiben.
Du kannst auf Beiträge in diesem Forum antworten.
Du kannst deine Beiträge in diesem Forum nicht bearbeiten.
Du kannst deine Beiträge in diesem Forum nicht löschen.
Du kannst an Umfragen in diesem Forum nicht mitmachen.
Du kannst Dateien in diesem Forum posten
Du kannst Dateien in diesem Forum herunterladen
.



goMatlab ist ein Teil des goForen-Labels
goForen.de goMATLAB.de goLaTeX.de goPCB.de


 Impressum  | Nutzungsbedingungen  | Datenschutz  | Werbung/Mediadaten | Studentenversion | FAQ | goMatlab RSS Button RSS


Copyright © 2007 - 2018 goMatlab.de | Dies ist keine offizielle Website der Firma The Mathworks
Partner: LabVIEWforum.de

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The MathWorks, the L-shaped membrane logo, and Embedded MATLAB are trademarks of The MathWorks, Inc.