Positionen bestimmter Einträge in einem Array finden
Numinis
Forum-Anfänger
Beiträge: 13
Anmeldedatum: 05.12.11
Wohnort: ---
Version: ---
Verfasst am : 09.01.2012, 23:16
Titel : Positionen bestimmter Einträge in einem Array finden
Hallo,
ich möchte in einem Array die Position bestimmter Einträge herausfinden. In einem zweiten Array habe ich die Zahlen, die ich im ersten Array suche, allerdings stehten im ersten Array Kommazahlen und im zweiten ganze Zahlen. Jetzt möchte ich die Position, die am dichtesten an der Zahl liegt, die im zweiten Array steht.
Hier mal die zwei Arrays, bei denen ich das anwenden will:
Code:
X=[ 1 ,2.24750000000000 ,3.49500000000000 ,4.74250000000000 ,5.99000000000000 ,7.23750000000000 ,8.48500000000000 ,9.73250000000000 , ...
10.9800000000000 ,12.2275000000000 ,13.4750000000000 ,14.7225000000000 ,15.9700000000000 ,17.2175000000000 ,18.4650000000000 , ...
19.7125000000000 ,20.9600000000000 ,22.2075000000000 ,23.4550000000000 ,24.7025000000000 ,25.9500000000000 ,27.1975000000000 , ...
28.4450000000000 ,29.6925000000000 ,30.9400000000000 ,32.1875000000000 ,33.4350000000000 ,34.6825000000000 ,35.9300000000000 , ...
37.1775000000000 ,38.4250000000000 ,39.6725000000000 ,40.9200000000000 ,42.1675000000000 ,43.4150000000000 ,44.6625000000000 , ...
45.9100000000000 ,47.1575000000000 ,48.4050000000000 ,49.6525000000000 ,50.9000000000000 ,52.1475000000000 ,53.3950000000000 , ...
54.6425000000000 ,55.8900000000000 ,57.1375000000000 ,58.3850000000000 ,59.6325000000000 ,60.8800000000000 ,62.1275000000000 , ...
63.3750000000000 ,64.6225000000000 ,65.8700000000000 ,67.1175000000000 ,68.3650000000000 ,69.6125000000000 ,70.8600000000000 , ...
72.1075000000000 ,73.3550000000000 ,74.6025000000000 ,75.8500000000000 ,77.0975000000000 ,78.3450000000000 ,79.5925000000000 , ...
80.8400000000000 ,82.0875000000000 ,83.3350000000000 ,84.5825000000000 ,85.8300000000000 ,87.0775000000000 ,88.3250000000000 , ...
89.5725000000000 ,90.8200000000000 ,92.0675000000000 ,93.3150000000000 ,94.5625000000000 ,95.8100000000000 ,97.0575000000000 , ...
98.3050000000000 ,99.5525000000000 ,100.800000000000 ,102.047500000000 ,103.295000000000 ,104.542500000000 ,105.790000000000 , ...
107.037500000000 ,108.285000000000 ,109.532500000000 ,110.780000000000 ,112.027500000000 ,113.275000000000 ,114.522500000000 , ...
115.770000000000 ,117.017500000000 ,118.265000000000 ,119.512500000000 ,120.760000000000 ,122.007500000000 ,123.255000000000 , ...
124.502500000000 ,125.750000000000 ,126.997500000000 ,128.245000000000 ,129.492500000000 ,130.740000000000 ,131.987500000000 , ...
133.235000000000 ,134.482500000000 ,135.730000000000 ,136.977500000000 ,138.225000000000 ,139.472500000000 ,140.720000000000 , ...
141.967500000000 ,143.215000000000 ,144.462500000000 ,145.710000000000 ,146.957500000000 ,148.205000000000 ,149.452500000000 , ...
150.700000000000 ,151.947500000000 ,153.195000000000 ,154.442500000000 ,155.690000000000 ,156.937500000000 ,158.185000000000 , ...
159.432500000000 ,160.680000000000 ,161.927500000000 ,163.175000000000 ,164.422500000000 ,165.670000000000 ,166.917500000000 , ...
168.165000000000 ,169.412500000000 ,170.660000000000 ,171.907500000000 ,173.155000000000 ,174.402500000000 ,175.650000000000 , ...
176.897500000000 ,178.145000000000 ,179.392500000000 ,180.640000000000 ,181.887500000000 ,183.135000000000 ,184.382500000000 , ...
185.630000000000 ,186.877500000000 ,188.125000000000 ,189.372500000000 ,190.620000000000 ,191.867500000000 ,193.115000000000 , ...
194.362500000000 ,195.610000000000 ,196.857500000000 ,198.105000000000 ,199.352500000000 ,200.600000000000 ,201.847500000000 , ...
203.095000000000 ,204.342500000000 ,205.590000000000 ,206.837500000000 ,208.085000000000 ,209.332500000000 ,210.580000000000 , ...
211.827500000000 ,213.075000000000 ,214.322500000000 ,215.570000000000 ,216.817500000000 ,218.065000000000 ,219.312500000000 , ...
220.560000000000 ,221.807500000000 ,223.055000000000 ,224.302500000000 ,225.550000000000 ,226.797500000000 ,228.045000000000 , ...
229.292500000000 ,230.540000000000 ,231.787500000000 ,233.035000000000 ,234.282500000000 ,235.530000000000 ,236.777500000000 , ...
238.025000000000 ,239.272500000000 ,240.520000000000 ,241.767500000000 ,243.015000000000 ,244.262500000000 ,245.510000000000 , ...
246.757500000000 ,248.005000000000 ,249.252500000000 ,250.500000000000 ,251.747500000000 ,252.995000000000 ,254.242500000000 , ...
255.490000000000 ,256.737500000000 ,257.985000000000 ,259.232500000000 ,260.480000000000 ,261.727500000000 ,262.975000000000 , ...
264.222500000000 ,265.470000000000 ,266.717500000000 ,267.965000000000 ,269.212500000000 ,270.460000000000 ,271.707500000000 , ...
272.955000000000 ,274.202500000000 ,275.450000000000 ,276.697500000000 ,277.945000000000 ,279.192500000000 ,280.440000000000 , ...
281.687500000000 ,282.935000000000 ,284.182500000000 ,285.430000000000 ,286.677500000000 ,287.925000000000 ,289.172500000000 , ...
290.420000000000 ,291.667500000000 ,292.915000000000 ,294.162500000000 ,295.410000000000 ,296.657500000000 ,297.905000000000 , ...
299.152500000000 ,300.400000000000 ,301.647500000000 ,302.895000000000 ,304.142500000000 ,305.390000000000 ,306.637500000000 , ...
307.885000000000 ,309.132500000000 ,310.380000000000 ,311.627500000000 ,312.875000000000 ,314.122500000000 ,315.370000000000 , ...
316.617500000000 ,317.865000000000 ,319.112500000000 ,320.360000000000 ,321.607500000000 ,322.855000000000 ,324.102500000000 , ...
325.350000000000 ,326.597500000000 ,327.845000000000 ,329.092500000000 ,330.340000000000 ,331.587500000000 ,332.835000000000 , ...
334.082500000000 ,335.330000000000 ,336.577500000000 ,337.825000000000 ,339.072500000000 ,340.320000000000 ,341.567500000000 , ...
342.815000000000 ,344.062500000000 ,345.310000000000 ,346.557500000000 ,347.805000000000 ,349.052500000000 ,350.300000000000 , ...
351.547500000000 ,352.795000000000 ,354.042500000000 ,355.290000000000 ,356.537500000000 ,357.785000000000 ,359.032500000000 , ...
360.280000000000 ,361.527500000000 ,362.775000000000 ,364.022500000000 ,365.270000000000 ,366.517500000000 ,367.765000000000 , ...
369.012500000000 ,370.260000000000 ,371.507500000000 ,372.755000000000 ,374.002500000000 ,375.250000000000 ,376.497500000000 , ...
377.745000000000 ,378.992500000000 ,380.240000000000 ,381.487500000000 ,382.735000000000 ,383.982500000000 ,385.230000000000 , ...
386.477500000000 ,387.725000000000 ,388.972500000000 ,390.220000000000 ,391.467500000000 ,392.715000000000 ,393.962500000000 , ...
395.210000000000 ,396.457500000000 ,397.705000000000 ,398.952500000000 ,400.200000000000 ,401.447500000000 ,402.695000000000 , ...
403.942500000000 ,405.190000000000 ,406.437500000000 ,407.685000000000 ,408.932500000000 ,410.180000000000 ,411.427500000000 , ...
412.675000000000 ,413.922500000000 ,415.170000000000 ,416.417500000000 ,417.665000000000 ,418.912500000000 ,420.160000000000 , ...
421.407500000000 ,422.655000000000 ,423.902500000000 ,425.150000000000 ,426.397500000000 ,427.645000000000 ,428.892500000000 , ...
430.140000000000 ,431.387500000000 ,432.635000000000 ,433.882500000000 ,435.130000000000 ,436.377500000000 ,437.625000000000 , ...
438.872500000000 ,440.120000000000 ,441.367500000000 ,442.615000000000 ,443.862500000000 ,445.110000000000 ,446.357500000000 , ...
447.605000000000 ,448.852500000000 ,450.100000000000 ,451.347500000000 ,452.595000000000 ,453.842500000000 ,455.090000000000 , ...
456.337500000000 ,457.585000000000 ,458.832500000000 ,460.080000000000 ,461.327500000000 ,462.575000000000 ,463.822500000000 , ...
465.070000000000 ,466.317500000000 ,467.565000000000 ,468.812500000000 ,470.060000000000 ,471.307500000000 ,472.555000000000 , ...
473.802500000000 ,475.050000000000 ,476.297500000000 ,477.545000000000 ,478.792500000000 ,480.040000000000 ,481.287500000000 , ...
482.535000000000 ,483.782500000000 ,485.030000000000 ,486.277500000000 ,487.525000000000 ,488.772500000000 ,490.020000000000 , ...
491.267500000000 ,492.515000000000 ,493.762500000000 ,495.010000000000 ,496.257500000000 ,497.505000000000 ,498.752500000000 ,500 ] ;
Y=[ 10 ,50 ,100 ,150 ,200 ,300 ,400 ] ;
Als Ansatz habe ich gemacht:
dann bekomme ich
da hat er aber die Position von 400 nicht gefunden, denn mit dem normalen round rundet er nicht auf 400.
Gibt es da vielleicht eine passende Funktion, oder wie könnte ich das geschickt machen?
Vielen Danke schon einmal für eure Tipps!
Harald
Forum-Meister
Beiträge: 24.501
Anmeldedatum: 26.03.09
Wohnort: Nähe München
Version: ab 2017b
Verfasst am : 10.01.2012, 00:10
Titel :
Hallo,
ich würde den Code eher so schreiben:
Das scheint mir das zu tun, was du dir vorstellst.
Grüße,
Harald
Numinis
Themenstarter
Forum-Anfänger
Beiträge: 13
Anmeldedatum: 05.12.11
Wohnort: ---
Version: ---
Verfasst am : 10.01.2012, 14:48
Titel :
Hey, danke!
Das ist genau was ich brauche.
Einstellungen und Berechtigungen
Du kannst Beiträge in dieses Forum schreiben. Du kannst auf Beiträge in diesem Forum antworten. Du kannst deine Beiträge in diesem Forum nicht bearbeiten. Du kannst deine Beiträge in diesem Forum nicht löschen. Du kannst an Umfragen in diesem Forum nicht mitmachen. Du kannst Dateien in diesem Forum posten Du kannst Dateien in diesem Forum herunterladen
Impressum
| Nutzungsbedingungen
| Datenschutz
| FAQ
| RSS
Hosted by:
Copyright © 2007 - 2025
goMatlab.de | Dies ist keine offizielle Website der Firma The Mathworks
MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The MathWorks, the L-shaped membrane logo, and Embedded MATLAB are trademarks of The MathWorks, Inc.